Δευτέρα, 20 Νοεμβρίου 2017

Από τις ταχύτητες στις θέσεις

Τρία αυτοκίνητα (α), (β) και (γ)  κινούνται ευθύγραμμα και στο πρώτο σχήμα δίνονται οι ταχύτητές τους σε συνάρτηση με το χρόνο:

Να αντιστοιχίσετε κάθε αυτοκίνητο με ένα από τα παρακάτω διαγράμματα, που παριστά την θέση του αυτοκινήτου σε συνάρτηση με το χρόνο.


ή


Τετάρτη, 15 Νοεμβρίου 2017

Από ένα διάγραμμα σε εξισώσεις κίνησης

Ένα σώμα κινείται ευθύγραμμα και στο διάγραμμα δίνεται η ταχύτητά του σε συνάρτηση με το χρόνο, όπου τη στιγμή που πήραμε ως t=0, το σώμα θεωρούμε ότι περνά από την αρχή (x0=0) ενός προσανατολισμένου άξονα x.
i)  Να περιγραφεί η κίνηση του σώματος μέχρι τη στιγμή t΄=6s.
ii) Να υπολογίσετε τις τιμές της επιτάχυνσης τις χρονικές στιγμές t1=1s και t3=5s.
iii) Ποια είναι η θέση του σώματος τις χρονικές στιγμές t2=2s και t3=5s, όπως προκύπτει από το παραπάνω διάγραμμα και χωρίς τη χρήση εξισώσεων κίνησης;
iv) Να βρεθούν οι εξισώσεις κίνησης (x=x(t)) για την κίνηση του σώματος, από τη στιγμή μηδέν, έως τη στιγμή t΄=6s.
v) Να βρεθούν ξανά οι θέσεις του σώματος τις στιγμές t2 και t3 με χρήση των εξισώσεων κίνησης.
ή



Παρασκευή, 10 Νοεμβρίου 2017

Η ελάχιστη απόσταση δύο αυτοκινήτων

Σε ευθύγραμμο δρόμο κινείται με σταθερή ταχύτητα υ1=10m/s ένα αυτοκίνητο. Σε μια στιγμή περνά από ένα σημείο Ο, απέχοντας απόσταση d0=80m, από ένα δεύτερο αυτοκίνητο Β, το οποίο την στιγμή αυτή ξεκινά την κίνησή του με σταθερή επιτάχυνση α2=1m/s2, όπως δείχνεται στο σχήμα. Λαμβάνουμε τη στιγμή αυτή ως t0=0 και το σημείο Ο ως αρχή ενός προσανατολισμένου άξονα x, με την προς τα δεξιά κατεύθυνση ως θετική.
i)  Ποιες οι θέσεις των δύο αυτοκινήτων τη στιγμή t0=0;
ii) Να γράψετε την εξίσωση κίνησης του Α αυτοκινήτου και να υπολογίσετε τη θέση του τη στιγμή t1=4s.
iii) Ποια η αντίστοιχη εξίσωση κίνησης (x-t) για το Β αυτοκίνητο; Να προσδιορίσετε τη θέση και την ταχύτητά του την στιγμή t1=4s. Πόση είναι η απόσταση μεταξύ των αυτοκινήτων τη στιγμή αυτή;
iv) Να βρείτε την ταχύτητα του Β αυτοκινήτου, καθώς και την απόσταση των δύο οχημάτων τη στιγμή t2=10s.
v) Κάποιος υποστηρίζει την άποψη ότι η απόσταση μεταξύ των δύο αυτοκινήτων είναι ελάχιστη τη στιγμή t2. Να εξετάσετε την ορθότητα ή μη της άποψης αυτής. Για έλεγχο, μπορείτε να χρησιμοποιήσετε και κάποια άλλη χρονική στιγμή.

ή


Σάββατο, 4 Νοεμβρίου 2017

Συσχετισμοί διαγραμμάτων


1)  Ένα αυτοκίνητο βρίσκεται τη στιγμή μηδέν στην αρχή του άξονα x και στο διπλανό διάγραμμα δίνεται η ταχύτητά του σε συνάρτηση με το χρόνο.
i) Να περιγράψετε την κίνηση του αυτοκινήτου.
ii) Ποιο από τα παρακάτω διαγράμματα μπορεί να δείχνει τη θέση του αυτοκινήτου σε συνάρτηση με το χρόνο;


2)  Ένα αυτοκίνητο κινείται ευθύγραμμα και στο διπλανό διάγραμμα δίνεται η θέση του σε συνάρτηση με το χρόνο.
i) Να περιγράψετε την κίνηση του αυτοκινήτου.
ii) Ποιο από τα παρακάτω διαγράμματα μπορεί να δείχνει την ταχύτητα του αυτοκινήτου σε συνάρτηση με το χρόνο;



Να δικαιολογήσετε τις απαντήσεις σας
ή


Τρίτη, 31 Οκτωβρίου 2017

Δύο κινήσεις και οι επιταχύνσεις τους

1) Μια  μπάλα Α κινείται οριζόντια και σε μια στιγμή t=0, έχει ταχύτητα μέτρου 2m/s, ενώ τη στιγμή t1=4s το μέτρο της ταχύτητας είναι 4m/s, όπως στο πάνω σχήμα, όπου φαίνονται οι θέσεις της μπάλας τις παραπάνω χρονικές στιγμές. Η προς τα δεξιά κατεύθυνση θεωρείται θετική, ενώ στο παραπάνω χρονικό διάστημα η μπάλα δεν άλλαξε κατεύθυνση κίνησης.
i) Η αρχική ταχύτητα της μπάλας έχει τιμή …….   ενώ τη στιγμή t1 η τιμή της ταχύτητας είναι …….
ii) Να υπολογίσετε την μέση επιτάχυνση της μπάλας στο παραπάνω χρονικό διάστημα.
iii) Αν η επιτάχυνση της μπάλας παραμένει σταθερή στο χρονικό αυτό διάστημα, να υπολογιστεί τη χρονική στιγμή t2=1,8s:
α) Ο ρυθμός μεταβολής της ταχύτητάς της.
β) Η ταχύτητα της μπάλας.
2) Μια  μπάλα Β κινείται οριζόντια και σε μια στιγμή t=0, έχει ταχύτητα μέτρου 3m/s, ενώ τη στιγμή t1=4s το μέτρο της ταχύτητας είναι 1m/s, όπως στο κάτω σχήμα, όπου φαίνονται οι θέσεις της μπάλας τις παραπάνω χρονικές στιγμές. Η προς τα δεξιά κατεύθυνση θεωρείται θετική, ενώ στο παραπάνω χρονικό διάστημα η μπάλα δεν άλλαξε κατεύθυνση κίνησης.
i) Η αρχική ταχύτητα της μπάλας έχει τιμή …….   ενώ τη στιγμή t1 η τιμή της ταχύτητας είναι….….
ii) Να υπολογίσετε την μέση επιτάχυνση της μπάλας στο παραπάνω χρονικό διάστημα.
iii) Αν η επιτάχυνση της μπάλας παραμένει σταθερή στο χρονικό αυτό διάστημα, να υπολογιστεί τη χρονική στιγμή t2=2,2s:
α) Ο ρυθμός μεταβολής της ταχύτητάς της.
β) Η ταχύτητα της μπάλας.
3) Συμπεράσματα:
i) Πώς θα χαρακτηρίζατε τις παραπάνω κινήσεις των δύο σφαιρών; Επιταχυνόμενες ή επιβραδυνόμενες;
ii) Με βάση τη μελέτη των δύο παραπάνω κινήσεων να κρίνετε την ορθότητα ή μη της πρότασης:
«Όταν ένα σώμα έχει θετική επιτάχυνση, τότε επιταχύνεται, ενώ όταν η επιτάχυνσή του είναι αρνητική το σώμα επιβραδύνεται».
ή

Τρίτη, 24 Οκτωβρίου 2017

Πώς υπολογίζουμε ταχύτητες σε μια ΕΟΜΚ

Ένα σώμα κινείται ευθύγραμμα και σε μια στιγμή t0=0, περνά από ένα σημείο Α, κινούμενο προς τα δεξιά με ταχύτητα μέτρου 10m/s, ενώ έχει σταθερή επιτάχυνση με  φορά προς τα αριστερά, μέτρου 2m/s2.
i) Να υπολογιστεί η ταχύτητα του σώματος τις χρονικές στιγμές:
α) t1=4s και β)  t2=7s.
ii) Ποια χρονική στιγμή το σώμα αλλάζει κατεύθυνση κίνησης;
iii) Πόσο απέχει το σώμα από την αρχική θέση Α, τη χρονική στιγμή που ενώ κινείται προς τα αριστερά έχει ταχύτητα μέτρου 10m/s;
Οι απαντήσεις να δοθούν:
Α) Θεωρώντας την προς τα δεξιά κατεύθυνση ως θετική.
Β) Θεωρώντας την προς τα αριστερά κατεύθυνση ως θετική.
ή


Δευτέρα, 23 Οκτωβρίου 2017

Τα κιβώτια με τριβές και χωρίς τριβή

Σε οριζόντιο επίπεδο ηρεμούν δυο σώματα Α και Β με μάζες Μ και 2Μ αντίστοιχα,  ηρεμούν σε οριζόντιο επίπεδο. Στο (α) σχήμα οι συντελεστές τριβής, τόσο μεταξύ του σώματος Α και επιπέδου, όσο και μεταξύ των  δύο σωμάτων είναι μ=μs= 1/6. Στο (β) σχήμα έχουμε τους ίδιους συντελεστές τριβής μεταξύ του σώματος Α και του επιπέδου, αλλά δεν εμφανίζεται τριβή μεταξύ των  δύο σωμάτων.
i) Αν F1 η ελάχιστη απαραίτητη οριζόντια δύναμη που πρέπει να ασκηθεί στο σώμα Α για να κινηθεί στο (α) σχήμα και F2 η αντίστοιχη για την περίπτωση του (β) σχήματος, ισχύει:
α) F1 < F2,     β) F1 = F2,    γ) F1 >  F2.
ii) Ασκούμε οριζόντια δύναμη μέτρου F=0,8Μg στο Α κιβώτιο και στις δύο παραπάνω περιπτώσεις. Αν α1 και α2 οι επιταχύνσεις που αποκτά το σώμα Α, στις δύο παραπάνω περιπτώσεις, τότε:
α) α1 < α2,     β) α1 = α2,    γ) α1 > α2.
ή



Πέμπτη, 19 Οκτωβρίου 2017

Πληροφορίες από δύο διαγράμματα


i) Μια μπάλα η οποία κινείται ευθύγραμμα, τη στιγμή t=0, περνά από ένα σημείο Ο, για το οποίο δεχόμαστε x=0.  Στο διπλανό διάγραμμα φαίνεται η ταχύτητα της μπάλας σε συνάρτηση με το χρόνο. Πότε απέχει περισσότερο η μπάλα από το σημείο Ο, τη στιγμή t1 ή τη στιγμή t2;
ii) Στο παρακάτω σχήμα, αριστερά φαίνεται το πώς μεταβάλλεται η επιτάχυνση της παραπάνω μπάλας, σε μια άλλη περίπτωση. Στο δεξιό σχήμα εμφανίζονται τέσσερα ενδεχόμενα για την κίνηση της μπάλας. Ποια ή ποιες από τις κινήσεις που βλέπετε, μπορεί να πραγματοποιεί η μπάλα;

Να δικαιολογήσετε τις απαντήσεις σας.
ή



Δευτέρα, 9 Οκτωβρίου 2017

Δύο κινήσεις αυτοκινήτων και ένα διάγραμμα

Σε ευθύγραμμο δρόμο κινούνται δυο αυτοκίνητα Α, Β και στο σχήμα φαίνονται οι θέσεις τους κάποια στιγμή που θεωρούμε ότι t0=0, όπου το Α περνά από το σημείο Ο, το οποίο θεωρούμε ως αρχή ενός προσανατολισμένου άξονα x, με θετική την προς τα δεξιά κατεύθυνση.
Στο διπλανό διάγραμμα δίνονται οι θέσεις των δύο αυτοκινήτων σε συνάρτηση με το χρόνο.
i)  Μπορείτε να περιγράψετε (χωρίς να κάνετε υπολογισμούς) τις κινήσεις των αυτοκινήτων;
ii) Να υπολογίσετε την ταχύτητα του Α αυτοκινήτου, καθώς και να γράψετε την εξίσωση κίνησής του (x-t).
iii) Ποιες οι αντίστοιχες απαντήσεις για το Β αυτοκίνητο;
iv) Ποια χρονική στιγμή το Β αυτοκίνητο περνά από τη θέση x2=124m και πόσο απέχει τη στιγμή αυτή από το αυτοκίνητο Α;
v) Ποια χρονική στιγμή τα αυτοκίνητα απέχουν μεταξύ τους απόσταση D=88m, πριν την συνάντησή τους;
ή


Πέμπτη, 28 Σεπτεμβρίου 2017

Πληροφορίες από ένα διάγραμμα

Ένα σώμα κινείται ευθύγραμμα και στο διπλανό διάγραμμα δίνεται το διάγραμμα της θέσης του σε συνάρτηση με το χρόνο, όπου τα τμήματα από 0-6s και από 10s-13s είναι ευθύγραμμα.
i)  Μπορείτε να περιγράψετε το είδος της κίνησης του σώματος, σε κάθε χρονικό διάστημα;
ii) Αν η ταχύτητα του σώματος τη στιγμή t1=2s έχει τιμή υ1=+4m/s, τότε τη χρονική στιγμή t2=12s έχει ταχύτητα με αλγεβρική τιμή:
α) υ2=+8m/s,   β) υ2=-2m/s,    γυ2=-8m/s.
iii) Ένα αυτοκίνητο κινείται ευθύγραμμα προς τα δεξιά, με σταθερή ταχύτητα μέτρου υ1 και περνά από τη θέση x0 τη στιγμή t=0. Σε μια στιγμή t1, αρχίζει να φρενάρει με αποτέλεσμα να σταματά τη στιγμή t2. Μένει ακίνητο μέχρι τη στιγμή t3 και στη συνέχεια επιταχύνεται προς τα αριστερά, μέχρι τη στιγμή t4, οπότε αφού αποκτήσει σταθερή ταχύτητα μέτρου υ21/2, συνεχίζει την κίνησή του με σταθερή ταχύτητα, μέχρι να φτάσει ξανά στη θέση x0. Να σχεδιάσετε ένα ποιοτικό διάγραμμα της θέσης του αυτοκινήτου σε συνάρτηση με το χρόνο (x-t), μέχρι την στιγμή που φτάνει στη θέση x0.
Να δικαιολογήσετε τις απαντήσεις σας.
ή


Παρασκευή, 22 Σεπτεμβρίου 2017

Ένα διάγραμμα και δύο ερωτήσεις.

Στον ίδιο ευθύγραμμο δρόμο, κινούνται δύο αυτοκίνητα Α και Β. Παίρνοντας κάποια  στιγμή σαν αρχή μέτρησης του χρόνου (t0=0), ένας φίλος σας, μέτρησε τις ταχύτητες των δύο αυτοκινήτων και σχεδίασε σε κοινό διάγραμμα, τον τρόπο μεταβολής τους.
i) Μπορείτε, με βάση το διάγραμμα, να απαντήσετε στο ερώτημα, ποιο αυτοκίνητο προπορεύεται, τη χρονική στιγμή t1;
ii) Ποιο αυτοκίνητο, το Α ή το Β, μετατοπίζεται περισσότερο από τη στιγμή t1 έως τη χρονική στιγμή t2;
ή


Δευτέρα, 18 Σεπτεμβρίου 2017

Οι ντουζίνες και τα mol σε ένα παιχνίδι.


Ένα φύλλο εργασίας
Πολλές φορές στην καθημερινή ζωή χρησιμοποιούμε διάφορες μονάδες για να δώσουμε μια ποσότητα από κάποιο σώμα. Ένας αγρότης λέει ότι μάζεψε 5 βαρέλια λάδι, αντί να πει ότι συγκέντρωσε 1100kg ελαιόλαδο. Μπορούμε να μιλάμε ότι πήγαμε και αγοράσαμε 3 ντουζίνες πιάτα, αντί να πούμε ότι αγοράσαμε 36 πιάτα. Ας παίξουμε λοιπόν με κάποια τουβλάκια Lego, όπου οι «συναρμολογήσεις» μετρώνται σε ντουζίνες!

1) Ο μικρός Διονύσης παίρνει δώρο στη γιορτή του ένα κουτί, μέσα στο οποίο υπάρχουν δυο σακουλίτσες, όπου στην πρώτη περιέχονται τρεις ντουζίνες συναρμολογημένα Lego x (σε ζευγάρια ανά δύο  σχήμα α) και στην δεύτερη μία ντουζίνα διαφορετικά (y πορτοκαλί και z πράσινο), συναρμολογημένα (ανά πέντε τουβλάκια ) όπως στο σχήμα β.
Η μαμά του μικρού Διονύση ζυγίζει τα δυο σακουλάκια και βρίσκει ότι έχουν μάζες mα=360g και mβ=780g, ενώ κάθε πράσινο τουβλάκι  z έχει μάζα m3=10g.
i) Πόσα ζευγάρια  περιέχονται στην (α) σακούλα και πόσα μοναδικά x μπλε τουβλάκια ;
ii) Πόση είναι η μάζα κάθε μπλε τούβλου ;

Ο μικρός Διονύσης καταπιάνεται στον μεγάλο στόχο του! Να δημιουργήσει νέο συνδυασμό, με τα παραπάνω τουβλάκια, σχηματίζοντας τριγωνάκια  Χ,  όπως στο σχήμα, ελευθερώνοντας τα πράσινα τουβλάκια z: 
Διαβάστε τη συνέχεια...
ή


Σάββατο, 16 Σεπτεμβρίου 2017

Οι θέσεις και οι μετατοπίσεις των σφαιρών


Σε ένα οικόπεδο μήκους 10m ηρεμούν δυο σφαίρες στις θέσεις Α και Β, όπως εμφανίζονται στο πάνω σχήμα. Σε μια στιγμή η σφαίρα στο Α, δέχεται ένα κτύπημα, με αποτέλεσμα να κινηθεί προς την πράσινη σφαίρα και να συγκρουσθεί μαζί της. Μετά την κρούση η πρώτη σφαίρα επιστρέφει και σταματά τελικά στη θέση Δ, ενώ η πράσινη κινείται για λίγο και σταματά στη θέση Γ. Στο κάτω σχήμα εμφανίζονται οι τελικές θέσεις που σταματούν οι δυο σφαίρες.

i) Μπορείτε με βάση τις δύο εικόνες να μετρήστε την αρχική και την τελική απόσταση μεταξύ των σφαιρών;
ii) Θέλοντας ο Αντώνης να περιγράψει μαθηματικά τις θέσεις και τις μετατοπίσεις των σφαιρών, παίρνει ένα σύστημα αξόνων xy, με αρχή τη θέση Α, όπως στο διπλανό σχήμα. Ποιες απαντήσεις δίνει ο Αντώνης στα παρακάτω ερωτήματα;
 α) Ποιες οι αρχικές θέσεις των δύο σφαιρών;
 β) Ποια η μετατόπιση της πρώτης σφαίρας, μέχρι τη στιγμή της  σύγκρουσης;

ή


Πέμπτη, 3 Αυγούστου 2017

Μια σανίδα σε κεκλιμένο επίπεδο.

Σε κεκλιμένο επίπεδο κλίσεως θ, όπου ημθ=0,6 συγκρατείται μια σανίδα ΑΒ μήκος (ΑΒ)= 2m και μάζας m=4kg, σε θέση τέτοια ώστε το άκρο της Α να απέχει απόσταση (ΑΓ)=2,25m από τη βάση του επιπέδου. Σε μια στιγμή αφήνουμε ελεύθερη τη σανίδα, οπότε χρειάζεται χρόνο t1=1,5s, μέχρι το άκρο της Α να φτάσει στο Γ.
Επαναφέρουμε τη σανίδα στην αρχική της θέση, τοποθετώντας στο άκρο της Β, ένα σώμα Σ μάζας Μ=6kg, το οποίο δεν εμφανίζει τριβές με τη σανίδα. Αφήνουμε το σύστημα ελεύθερο να κινηθεί.
i) Με ποια ταχύτητα το σώμα Σ εγκαταλείπει το άκρο Α της σανίδας;
Επαναλαμβάνουμε το πείραμα, αλλά τώρα τοποθετούμε τη σανίδα σε άλλο κεκλιμένο επίπεδο, της ίδια κλίσης, με το οποίο εμφανίζει συντελεστές τριβής μ=μs=0,2. Τοποθετούμε στο άκρο της Β το ίδιο σώμα Σ και κάποια στιγμή, αφήνουμε ξανά ελεύθερα τα σώματα να κινηθούν.
ii) Ποιες οι ταχύτητες σανίδας και σώματος Σ, τη στιγμή που το Σ εγκαταλείπει τη σανίδα;

Δίνεται g=10m/s2, ενώ το σώμα Σ να θεωρηθεί υλικό σημείο.
ή


Σάββατο, 27 Μαΐου 2017

Δύο αυτοκίνητα κινούνται ευθύγραμμα

Δυο αυτοκίνητα Α και Β κινούνται σε ευθύγραμμο δρόμο με σταθερές ταχύτητες υ1=10m/s και υ2=54km/h, προς την ίδια κατεύθυνση. Σε μια στιγμή (στην οποία θεωρούμε t=0) τα αυτοκίνητα βρίσκονται το ένα δίπλα στο άλλο, όπως στο σχήμα. Θεωρούμε τη θέση αυτή ως την αρχή του άξονα (x=0).

i) Ποιο αυτοκίνητο κινείται γρηγορότερα;
ii) Να βρεθεί η απόσταση των δύο αυτοκινήτων τη χρονική στιγμή t1=10s. (Να μην ληφθούν υπόψη οι διαστάσεις των αυτοκινήτων, τα οποία να αντιμετωπίσετε ως υλικά σημεία).
iii) Τη στιγμή t1 το Α αυτοκίνητο αποκτά σταθερή επιτάχυνση α1=0,4m/s2 με φορά προς τα δεξιά.
α) Να βρεθεί η ταχύτητά του τη χρονική στιγμή t2=30s.
β) Πόσο απέχουν μεταξύ τους τα δύο αυτοκίνητα τη στιγμή t2;
iv) Ποιο αυτοκίνητο θα φτάσει πρώτο στη θέση x3=580m;
ή


Πέμπτη, 25 Μαΐου 2017

Η κίνηση και η μέγιστη ταχύτητα σώματος

Ένα σώμα ηρεμεί σε οριζόντιο επίπεδο με το οποίο εμφανίζει τριβές με μέτρο Τορολ=5Ν. Σε μια στιγμή δέχεται την επίδραση οριζόντιας μεταβλητής δύναμης F, το μέτρο της οποίας μεταβάλλεται σε συνάρτηση με το χρόνο, όπως στο διάγραμμα.
Να χαρακτηρίστε τις παρακάτω προτάσεις ως σωστές ή λανθασμένες, δικαιολογώντας πλήρως τις θέσεις σας.
i) Μόλις ασκηθεί στο σώμα η δύναμη F, αυτό θα κινηθεί προς δεξιά.
ii) Το σώμα, στο χρονικό διάστημα 0-8s, έχει μέγιστη επιτάχυνση προς τα δεξιά, τη στιγμή t1=4s.
iii) Τη χρονική στιγμή t1=4s, το σώμα αποκτά τη μέγιστη ταχύτητά του.
iv) Το σώμα σταματά να κινείται τη χρονική στιγμή t2=6s.
ή